Rolla Biotech BBB Business Review

HPLC High Pressure Liquid Chromatography

High-performance liquid chromatography (HPLC; formerly referred to as high-pressure liquid chromatography), is a technique in analytic chemistry used to separate the components in a mixture, to identify each component, and to quantify each component. It relies on pumps to pass a pressurized liquid solvent containing the sample mixture through a column filled with a solid adsorbent material. Each component in the sample interacts slightly differently with the adsorbent material, causing different flow rates for the different components and leading to the separation of the components as they flow out the column. HPLC has been used for medical (e.g. detecting vitamin D levels in blood serum), legal (e.g. detecting performance enhancement drugs in urine), research (e.g. separating the components of a complex biological sample, or of similar synthetic chemicals from each other), and manufacturing (e.g. during the production process of pharmaceutical and biological products) purposes.[1] Chromatography can be described as a mass transfer process involving adsorption. HPLC relies on pumps to pass a pressurized liquid and a sample mixture through a column filled with a sorbent, leading to the separation of the sample components. The active component of the column, the sorbent, is typically a granular material made of solid particles (e.g. silica, polymers, etc.), 2–50 micrometers in size. The components of the sample mixture are separated from each other due to their different degrees of interaction with the sorbent particles. The pressurized liquid is typically a mixture of solvents (e.g. water, acetonitrile and/or methanol) and is referred to as a "mobile phase". Its composition and temperature play a major role in the separation process by influencing the interactions taking place between sample components and sorbent. These interactions are physical in nature, such as hydrophobic (dispersive), dipole–dipole and ionic, most often a combination thereof.

Set Descending Direction

1-16 of 90

Page:
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

Set Descending Direction

1-16 of 90

Page:
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5